Friday, July 13, 2018



To find life on Mars, we'll need new orbiters, more advanced rovers, and humans

LANL's Nina Lanza, LANL photo.

It’s a bright, hot June day at the InterPlanetary Festival in Santa Fe. Los Alamos National Lab is out vaporizing rocks for passers-by. On the stage, Nina Lanza, a staff scientist at Los Alamos, is talking Mars.

“There is methane currently in the atmosphere on Mars,” she says, “and it’s not just there constantly, it’s little puffs that appear to be seasonal.” Methane on Earth, she says, comes from volcanoes and life. “Methane doesn’t last long, it lasts on the order of a hundred years … so when we see methane on Mars, we know that something is making it now.” (Full Story)



Targeted radioactive treatment offers promise in cancer treatment

Hot cells at Los Alamos National Laboratory, LANL photo.

Los Alamos National Laboratory produces actinium-225 for use in targeted radiotherapy and it will soon be tested on volunteer patients. Early results elsewhere are promising.

A radioactive isotope may sound like something that could do more harm than good when it comes to potential cancer treatments, but actinium-225 has proven to be quite effective in the battle against cancer. Actinium-225 can attach to molecules that target only cancer cells, without harming neighboring health cells. In clinical trials treating late-stage prostate cancer patients, it wiped out the cancer in just three treatments. (Full Story)



From coal, a new source of rare earths

DOE scientists have developed technology that can extract rare-earth elements from aqueous solutions. NETL photo.

Demand for rare-earth elements, which include the lanthanides plus scandium and yttrium, has ticked upward over the past few decades, the Department of Energy (DOE) is investing millions of dollars in projects to develop a potentially sustainable domestic source from coal and coal waste products.

At Los Alamos National Laboratory, researchers are investigating whether the separation technology used to extract actinides from uranium can be transferred to extract and recover lanthanide products from coal. (Full Story)



New insights into what might have smashed Uranus over onto its side

Uranus is seen in this false-color view from the Hubble Space Telescope, NASA image.

The gas/ice giant Uranus has long been a source of mystery to astronomers. In addition to presenting some thermal anomalies and a magnetic field that is off-center, the planet is also unique in that it is the only one in the Solar System to rotate on its side.

Thanks to a new study led by researchers from Durham University that includes Los Alamos National Laboratory, the reason for these mysteries may finally have been found. With the help of NASA researchers and multiple scientific organizations, the team conducted simulations that indicated how Uranus may have suffered a massive impact in its past. (Full Story)



New Mexico nuclear weapons laboratory marks 75 years

When J. Robert Oppenheimer invited top scientists, engineers and technicians to New Mexico in 1943 to build the world's first nuclear weapon, no one really knew what the results would be.

The once-secret city of Los Alamos is marking 75 years of discovery at Los Alamos National Laboratory, which still plays a key role in maintaining the United States' nuclear weapons cache. The facility also still conducts research on everything from renewable energy technology to public health concerns and the effects of insects on stressed forests. (Full Story)

To subscribe to Los Alamos Press Highlights, please e-mail listmanager@lanl.gov and include the words subscribe PressHighlights in the body of your email message; to unsubscribe, include unsubscribe PressHighlights.

Please visit us at www.lanl.gov